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ABSTRACT. Let f(°jh) be a kernel estimator of a density f, usinp bandwidth h.

The bandwidth hf which minimises the integrated square error of f, depends on

the unknown f. Therefore it is not a practical choice. Any data-driven

attempt to minimise integrated square error must employ a bandwidth h which

depends only on the sample. The integrated square error using h will exceed

that using hf. In this paper we show that there is an unbridgeable gap

between these two integrated square errors. In fact, we quantify the amount

of noise inherent in any data-driven attempt to estimate hf. A bandwidth

which minimises this noise might be called "second-order optimal". We show

that the cross-validatory bandwidth is second-order optimal.
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1. Introduction.

Let f(.Jh) be a nonparametric, kernel estimator of an unknown density f,

with bandwidth (window size) h. A considerable amount has been written about

"optimal" selection of bandwidth, usually in the context of minimising L
2

error (see e.g. Fryer [6], Wegman [23]). In particular, there are well-

known asymptotic formulae for the window hf which minimises mean integrated

square error for a given f (see Parzen [14], Rosenblatt [17]). Of course,

h f depends intimately on the unknown density, and so is not a practical choice.

* Furthermore, a statistician who has been given a sample to analyse should

really be interested in minimising integrated square error for that part-

icular sample, not in minimising the average error over all possible samples.

Unfortunately the window hf which minimises integrated square error is also

an intricate function of the unknown f.

'79- Any practical method of constructing a bandwidth 7ustdepend only on 4he

f~i iu^sample, and should produce some sort of estimaterof , J The purpose of this

paper is to show that there are well-defined limits to the accuracy of all

data-driven bandwidth estimates. Put another way, there is an unbridgeable

4-gap between the minimum integrated square error attained using t-he optimal

bandwidth hf, and the minimum achievable integrated square error using a data-

driven bandwidth estimate. ""2. 'Kz' ..

We pause now to introduce notation. Let Xl,.--, X be a random sample
n

from an unknown density f, and let K be a kernel function. Here and during

- most of this paper we work in one dimension, although extensions to higher

*dimensions will be indicated at the end of Section 2. We assume at least

.......... .. ... .•. . ..**...... ... *. ~*..a . .. ..... , ... . ... . ...
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that K is continuous with compact support, and is constructed to suit a

density f with t(> 2) bounded derivatives:

1 if i=O

S(.) f z K(z)dz = 0 if 1 < i < t-I

I.dK if i= t,

" where dK$ O. (The most common case, where K is symmetric and positive, has

t= 2 in these specifications, see Parzen [14] and Bartlett [1] for discussions

of the general case. Our density estimate is

f(xlh) - (nh)l nI K{(x-X i/h,-°<<,

i i=1

and has integrated square error

A(h,f) -. f{f (xlh) - f(x)} dx

Mean integrated square error is given by

..

M(h,f) E{A(h,f)}.
'T'.

Define also:

D(h,f) - A(h,f) - M(h,f)

Assume f has at least t continuous deviratives, and suppose for the

sake of argument that f vanishes outside a compact interval. (This property

permits us to avoid cumbersome regularity conditions, but is not essential.)

Then the "optimal fixed bandwidth" hf minimises M(h,f) and is asymptotic to

a constant multiple of n1/(2t 1) and the "optimal bandwidth" hf minimises

.? A(h,f) and satisfies hf/hf - 1 in probability as n Any practical' procedure for constructing a bandwidth produces a random variable h which is

LA

*0

" :'*-**.. . ' .' ' •. . i" '. .• . ... v..v -.' .-.... .. -....=-.-.--... -.... '-.--, .- -,--

S * -. S•% .% -° . .*% .-. °t
•
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a function solely of the sample; it clearly must not depend on the unknown f.

A statistician who claims that a certain procedure h is "best possible", is

really saying: "In some sense, the closest you can come tominimizingA(h,f),

is6(h,f)". Of course, A(h,f) exceeds the true minimum A(hfsf), but we

cannot realistically expect to close that gap. It is known [9] that if hc

*" is the cross-validatory window, then n{A(hcf) - A(hff)} has an asymptotic

chi-square distribution with one degree of freedom. Therefore the distance

between A(h,f) and A(hf,f) can be reduced to at least order n In Section

2 we shall show that in a minimax sense, order n- 1 is a lower bound as well

* as an upper bound. From this point of view, least-squares cross-validation

*is second-order optimal; it is already known to be first-order optimal

[7,8,21,4].

Throughout this discussion we have assessed optimality on the A-scale,

not the h-scale. However, the two are interchangeable. To see this, observe

that if the kernel K has two continuous derivatives then we may expand A(h,f)

in a Taylor series about hf, obtaining:

A A A (hff~f)2A ()
A(h,f) = A(hff) + fh) A + 1AA 2 (h*

where h* lies inbetween h and hf, and

(i
A(i)(h,f) - (6/6h)' A(h,f)

* Since hf minimises A(.,f),

A(h,f) - A(hff) = l(h-hf) 2 A( 2 (h*,f)

Suppose the data-driven bandwidth h has at least a chance of being "good",

so that h/h f - 1 in probability. Then it may be shown, under the conditions

stated earlier about f, that as n -+

-. . . ..... . . . . . . . . . . .

.. .. ................... .......
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n2(t-l)/(2t+l) A (2) h*,f) - c(f,K) > 0

in probability. In fact,

c(f,K) rli n2(t'l)/(2t+l)N(hff).
n.-K

Therefore

A(h,f) - A(hf,f) - c(f)n -2 t (h- h) f) {l + o (l).

It follows from this expansion that whenever A(h,f) - A(h ,f) is of
1 3/%f

order n-1 , we also have h-hf of order n-3/2(2t+1) . Furthermore

the fact that n- 1 cannot be improved upon is equivalent to the statement

that h and hf must be at least n 3 /2 (2t.l) apart in some sense. Therefore
procedure h for which h-hf 3/2(2t1) is "best possible".

It is instructive to specialise these formulae to the important case

t=2, where the kernel is usually taken to be positive. There, the bandwidths

-1/h and hf are both asymptotic to a constant multiple of n , and (we are
¢ -3/10

" claiming) their distance apart is at least n in a minimax sense. There-

fore the fastest rate of convergence of h to hf is excruciating slow:
*i (h/hf) - 1 can be no smaller than order n 1 / 1 0 , in a minimax sense.

For most of this paper we discuss our results on the h-scale, not the

A-scale, since we feel statisticians are more familiar with bandwidth than

they are with integrated square error. The statistician must make an

explicit choice of bandwidth, but only chooses integrated square error

*indirectly. Our main results will be formulated in Section 2, and proved

in the ensuing two sections. Section 3 will give introductory lemmas, while

. Section 4 will present main proofs.

It is worth pointing out that our results (as well as their proofs)

are quite different in character from traditional works on "optimal rates

,...... ........... '. .° .. . -. . % - .. ,.. . • ..-.... '. . ... , * • . - - . . . ' . . .- ." . .- °- ." .", " .
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of convergence" for nonparametric density estimators [S,10,12,13,18,19,22,2].

The classical argument involves showing that a certain kernel estimator

(for example) is asymptotically optimal in the class of all possible density

- estimators; that class includes orthogonal series estimators, spline

estimators, etc. But in our case we confine attention not only to kernel

estimators, but to kernel estimators constructed using a specific, fixed

kernel K. The only variable is the bandwidth in that special estimator.

We are, in effect, switching attention from the problem of "best estimates"

of a density, to that of "best estimates" of the bandwidth hf. But hf is

a random varible, and our problem of "estimating a random variable" is

- quite different from that of estimating a density function. Works of Rice

*[16] is perhaps closest in spirit to this paper and [9], although Rice did

not view the minimiser of integrated square error as the benchmark bandwidth.

Rice's work is for the case of nonparametric regression, and a sequel to

our paper will describe analogues of our results in that context.

.°.-



2. Main results.

Minimax theory is usually developed by assessing performance over a

specific "test class" 0 of distributions. It is clear that if 0' is any

class containing 0, then the worst performance over 0' is at least as bad

as the worst performance over 0. Therefore a basic result about distributions

in 0 may be generalized in many ways.

To define 0, we begin with any compactly supported density fo having

t+2 derivatives on _ and (for convenience) satisfying f0(x) E c (0) >

for XE [0,11. Define c(l) - sup 'Ifo0 ) (x)l . Let ip be any function on
x;j<t+2

[0,j which has t+2 derivatives and satisfies sup lip 2(x)I<2cO<x<1

0 (J)1 >0 and P(J)(0) = 1 (J)(1) = 0 for 0 < j < t+2. Set p(x) = -ip(1-x)

for x E [-,1], and extend Tp from [0,1] to (_coo) by periodicity. Let m

* equal the integer part of n1/(2t+1) and define

fm -t Wp(mx) for 0 < x <1
y(x) y(x,n)

0 otherwise.

,For v 0,...,m-1,

" lety v (x) = y(x) on Cv - [vm- , (v+l)m-] and yv (X) 0 off Cv

Let {T, 0 < v < m-l} be any sequence of length m all of whose elements

are zeros and ones, and let

a (x) = O(e0,. ..,r m)(X)-f(X) f + Z Tv Yv(x)} -- < x < .

*The set 0 = 0 (n) is defined to be the class of all such functions e.

The elements ofOare all probability densities with support equal to the

support of f0 and satisfying

sup o(JW(x)I < c
x;j<t

. * .
. . . . . . ..
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In particular, the t'th derivatives of densities in 0 are all uniformly

bounded. The kernel K specified by (1.1) is designed for just this type

of density.

We are now in a position to state our main theorem. Let K be any

compactly supported kernel satisfying (1.1), and having two H61der-

-" continuous derivatives on (_o,). Let h be a data-driven bandwidth estimate.

Any positive function of the sample X1 ,...,X n is a candidate for h. Recall

* that he is the bandwidth which minimizes A(h,e).

T1EOREM 2.1. Under the above conditions on K,

(2.1) lim liminf sup Pe(Ih-heI >,= .
E-O n 0 O0

In this sense, no data-driven bandwidth can get closer than order

-3/2(2t+l) to h
n tooe h

Next we introduce the cross-validatory bandwidth. Let fdenote the

kernel estimate obtainedby leaving out the i'th sample value:

'"f .(x~h) = {(n-1)h} - I  Z K{(x-X.)/h}.
i jji

Define
n

6(h,e) E 2f f(xlh)o(x)dx - 2 n f(xih)

(2.2) CV(h) E A(h,O) + 6(h,e) - f6 2

ff 2 (xlh)dx - 2n- f A(Xi1
h )

i=1l.X.h

The cross-validatory window, hc, is that value of h which minimizes CV(h).

Our next theorem is the natural complement of Theorem 2.1, in the case

where h= h
c

A. ._M
. . . . .. •. -. .. -.-.-. ,. .. .. -.. -.. •. .. . -. •. -. . . .,- .. ."• .. ,, . .",.." .• . .- ",",.- ".~~~~~~.....-.. ".. "... .''"....-.-.. -.-...-.-.-.-.-. , ' '"..".,"".. .","/ .... . . .".. %" ",•" ,, "
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*, THEOREM 2.2 Under the same conditions on K,

(2.3) lim limsup sup PO(jhc-h n3/2(2t+1)) = 0.
n -)

Thus, h is as close to h as it is possible to get, in a minimax sense.
R-sule

Result (2.3) fails to hold if 0 is replaced by the class of densities f

with t uniformly bounded derivatives, or even by the class C(BO,...,Bt) of

all compactly-supported densitives satisfying

sup If(i ) (x) <_ B., 0 < i < t,
_o0<x <0

" for given constants B Bt. To see this, suppose Z has density fE C(B),

and let Z, EZ for p > 1. The density f of Z is in C(B), and since
I- P P P ,^

scalar expansion of the data leads to an identical expansion of both h and
c

hf, we have:

Spf (1h ch f J> I -n/2(2t+l) P f(h c_hfl >p-1 Xn-3/2(2t+l))

-- Consequently,

sup Pf(1hc-hf[ >xn- 3/2 (2t+l)) = 1

Sfc C(B)

for each A >0 and each n > 1. (A similar property may be observed if we

* work on the A-scale instead of the h-scale.)

There are several ways of re-defining C(B) so as to avoid this type of

* behaviour. For example, we might insist that densities in C(B) be above a

certain level over an interval of predetermined length. However, we prefer

' to avoid the obscuring technicalities involved in this specificaiton by

using the same test class 0 to measure both upper and lower bounds to

performance.

p.... .

.. . . . . . . . . .
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Theorems 2.1 and 2.2 have analogues on the A-scale. We state them

together here, without proofs. Once again, h denotes an arbitrary data-

driven window.

* TIEOREM 2.3. Under the same conditions on K,

lim liminf sup P6 {A(h,O) A(hee) > } = 1,m 0 n * 00 eE o

lim limsup sup P.{A( hc) A(ne,0) > Xn : 0
,- o n-* OE C)"

To obtain analogues of these results for p-dimensional density estimators,

modify the class 0 along the lines of Stone [20]. Theorem 2.3 continues to

hold without change.

.- . . . . . . . . . . . .

. .



3. Preparatory lemmas.

In this and the next section, the symbols C, C1, C2 ,... denote generic

positive constants. E denotes the complement of an event E. Superscript

notation in A() 6 M j  and D indicates differentiation with respect

to bandwidth, h. We keep our proofs very brief, leaving out all arguments

whose development closely parallels work in [9]. There are no essential

differences between arguments for different values of t, and so we work

only with t=2, to simplify notation.

Several useful, intuitively obvious technical properties of densities from

0 are summarised in our first lemma. The proofs are tedious but straight-

forward, and so we give only an outline.

LEMMA 3.1 Take t=2 in all that follows. Then: for some n0 > 0,

(3.1) 0 < inf nl/Sh < sup n1/ 5 he < O;
n>n 0 ,6E.3 n>n,Opef

for any E >0 there exists n = n(s) > 0 such that

(3.2) inf M(h,O) > (l+n)M(h8,6)(32 h-hel >n 1/

for all OE 0 and all large n; for some n0 > 0,

(3.3) 0 < inf n M (he,< sup n M 2 (h ,e)<ooSn>n0,0CO n>n0,0 EO

for any c> 0 there exists n = n(s) >0 such that

(3.4) sup n1/5 IM (h,0) - M 2 (ho,e)I < q(E)n -

jh-h 0 1 _

for all 0r®: and all large n, and n(E)-*0 as c-0.

. . . . . . . . . . . . . . . . . .. . °... .... .... . . .-. . . " .
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, OUTLINE OF PROOF: Write

M(h,O) = v(h,0) + B(h,e),

where
'-lh-1 2-

V(h,) = n h ff K(u) 0(x-hu)dudx - n- f[fK(u)e(x-hu)du 2dx,

B(h,O) = f[fK(u){0(x-hu) - e(x)}du] 2 dx.

" The derivatives M (1) (h,0) and M(2)(h,0) may be studied by differentiating

V(h,e), then approximating as in Rosenblatt [171, and by differentiating

B(h,O) and using a Taylor expansion with integral form of the remainder. J

Proofs of Lemmas 3.2 and 3.3 below closely parallel those of Lemmas 3.1

and 3.2 in t9]. In establishing (3.10), note (3.1).

LEMMA 3.2. For each 0<a<b<- and all positive integers Z,

- (3.5) sup Eejn 7 /10D(1) (n- / 5 t,e) 2  < C1 (a,b,k),i n,fl o,a<t<b

(3.6) sup E0 n7 10'6(1)(n1/ t,) < C(a,b, )

n, rOc,a<t<b 1

Furthermore, there exists cI >0, not depending on a,b or 9., such that

(38 EI 7/10 (1) -1/5 (1) -1912
(3.7) En7 {D( (n s,0) D D1(n- 1lt,O)l 2Z<C 2 (a,b,k)ls-t[l1

;"(3.8) Ealn 7/10OU,(1) (n- 1/5Ss,6) _ (1) (n-1/S t,o)} 29, <_ C 2(a,b,Z ) [s-ttl z

for all Oc 0 and a < s < t < b.

LEMMA 3.3. For some E>O and any O<a<b<o,

(3.9) sup P,[ sup {ID(1)(n-l/5t,0)I + i6(1)(n-/St,e) n-S] . 0.
e 0 a<t<b

- Furthermore, for any C2> 0 and n > 0,

\2
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(3.10) sup P0[ 1/) sup Dc2  (n-'5tO) (hO
OO It-n heIfn

+ 1601)(n-1/ 5 t,0) - 6(1)(hoe)I}>n ]  0.

LEMMA 3.4. For any c>0,

sup P0 (1h0 -h0 1 > n -  ) + 0.
Ole

PROOF. It suffices to show that for any sequence of choices 01= en 0, and

for each E>0,

A 
/

(3.11) P0 (1h 0-h 0 1>En - I ) 0.

-b A b
We may easily prove that for some b>0, P (n <h 0  < n ) 1. Let H=H

be a set of bandwidths in the range [n-b,n b, and such that #(H) < na for

* some a> 0. Arguing as in the proofs of Lemmas 2 and 4 of Stone [211 we may

show that for each c >0,

. (3.12) P0 {sup JA(h,0 1 ) - M(h,O 1)I/M(h,0 1 ) >el}0.
Il hcH

* Now use H6lder continuity of K to show that for any (random) bandwidth h with

-b - b
Pl(n <h< n )+1,

. P0 {IA(h,0 1) M(h,0 1 ) I/M(h,e 1) > E}0

Finally invoke (3.2), to obtain (3.11). 1

Recall that h is the cross-validatory window, chosen to minimise the
C

function CV(h) at (2.2).

, LEMMA 3.5. For any c >0,

sup P0(h c -hel > en ) 0 .
0- e00

1°
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-N PROOF. Again, it suffices to prove that for any c >0 and sequence 0 1= lnc 0 ,

(3.13) P01 (1h he1I > en - )  ,

-b " b
and it is easily shown that for some b >0, P (n _< hc < n )-I. Define

1c

2 
n

CV(h,0)-CV(h) + f 2 + 2n (n-1) (n+1) f {0(X.) - E (X. )1
1 i

and let H be as in the proof of lemma 3.4. Minimising CV is equivalent to

minimising CV(o,e), for any e. Using the argument leading to Stone's [21]

Lemmas 2,3 and 4, we may show that for any E >O,

P0 {sup jCV(h,e 1) - M(h,01) /M(h,01) > ci0.

This formula serves as an analogue of (3.12) in the proof of Lemma 3.4. The

proof of (3.13) may now be completed as was that proof. LJ

LEMMA 3.6 For some c> O,

sup Po(lhe-hol + Ihc-he[ >n-/ -+O
,c 0

* PROOF. Argue as in Lemma 3.3 of 19], but use Lemmas 3.4 and 3.5 above to

replace the limit theorems ho/h0 
p  1 and hc/h0 

P  1 'in notation of [9]),

"- and use our Lemma 3.3 in place of Lemma 3.2 of [9].

LEMMA 3.7

lim limsup sup (h >n 3 /1 0) =

n- n EEO

PROOF. It suffices to show that for any sequences 01= 0 I 0 and X n ,

S- 3 /10)
(3.14) P e Ih 01-he I > Xn 

n' 0.

Observe that

(3.15) 0 = A'1 (hl ,01) = M{1)(h 0 ,01) + D1)(h 0 ,0) h0 -he )M 2 )(h*,0 1)
1.-1 1 1 1 '

+ D(1)(h0 ,O)

%1%l-° * .., * " - °,. *.° *. ° . , , " " " . °- ~ . , - .- " ,°, - , . , •*,°. •*.'., *• ° . . * *° *...° . , ° , , ,*."

'."" -,..".".' . -'.'-,-,''Z:':,.'"."," .'-'_. - .'-. ,'''f,'-',".,,-".. ". . ." , .. ,' *,,.. ,". . . . ..."-",",",-,-. ...
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where h* lies inbetween h0 and h . Define c1 = c1 (n) and c2 = c2 (n)

1/5ad (2) 1 2/5by h0 cn and M((h 01  )- c2n . Then c1 and c are bounded

away from zero and infinity as n -o (note (3.1) and (3.3) from Lemma 3.1).

Given any F>0, there exists rI(Q)>0 such that n(E)-0 as E-0 and for large n,

sup 1 M(2)(h,O) - M(2) (h ,1( < n(C)n 2/ 5

Ih-h6  zn" 5
10

(Note (3.4) of Lemma 3.1.) Let al, b1 be fixed positive lower, upper bounds

to cl, respectively, and let a2 be a fixed positive lower bound to c2.

Choose , (0,la) so small that n( ) < a2

By (3.15),

h01h 0  < (la 2n-2/5 I D (

< 2a2-1n2/5 suv D(l)(n1/StO)i
2 al<t< al+b I

^. n-1/S

whenever the event E {h 1-he < n holds. Let E2 be the event

sup ID(1) (n-I/St,1 < n-3/5-c}, where a= -al, b= 1a 1I b and E is as

a<t<b

in (3.9) of Lemma 3.3. Whenever E n E2 holds, so does the event

E {  he < 2a2  n-5 . Let E be the event that
3 2 4[ 1 1

'D(1 )(h0  0) D( 1 (h1 81 n 7 /1O

Then:

- (3.16) 01 (Ih0 eh 0 1 >X n n -3 /1 <1  (E +) + 2(E2) + a (E3 n E4)

-+ PSID(1) (h  > X n-3/10 (2a -1 n 2/5-1 -7/10

e 12

-.-: .-; .-" -:. --.' -.' ..' -.-: .. .-'. : .. '.: -i ' .-' -'. .'. -': .'.: ',: .' '.: " : ..'.. . . ...-.... . . . ..... .... .... .. ..... .. ..'"...."-.'.. .'... . ':" .:.' *Y .... '.* ." *-'" -" t "..
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Chebychev's inequality and (3.5) of Lemma 3.2 show that the last-written

* probability converges to zero as n 0. Lemma 3.4 gives P 6(E1 )O, (3.9)

of Lemma 3.3 gives P0 (E2 )O, and (3.10) of Lemma 3.3 gives P l(E3 nE4) O.

J

Result (3.14) now follows from (3.16). LJ

LEMMA 3.8
" Xn-3/10)

Slim limsup sup P(Ihc-heI > XnI = 0.
X-o n 0 E0

PROOF. Use essentially the argument employed to prove Lemma 3.7, but

replace (3.15) by

" 0o = CV(1)(hc) =M(1)(hc,01) + D(1)(hc,01) + ( 1)(hc,01)
)M)(2)

0,=.CV"(h (hh0 1 (h*,01)h + (1 (hc,1 ()h,1

" where h* lies inbetween hc and h e[*

We pause to introduce further notation. Let iT be a kernel function, and

let
n

p(xIh) - (nh) {(x-Xi)/h}U i=l

be the corresponding density estimator. Set

s v(h,0)- fCV {p(xjh) - 0(x)}y(x)dx,

where y is as in Section 2.

LEMMA 3.9. Assume ff is H61der continuous, vanishes outside a compact

* interval, and satisfies fiT(x)dx = 1, fx Tr(x)dx = 0. Then for each

O<a<b<- and each E>0,

sup P0{ sup is (n-I/St,0)j>n - I +E }  0
0 v; a<t<b

.-
. . . . . . ...o*... . . . . .
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PROOF. Using H6lder continuity of r and the fact that 7r vanishes outside

a compact interval, we may choose X >0 so large that

is v(n- /s,o) - Sv(n- 1/t,o)j <C 1 n
-1

uniformly in n > 1, CEO, v, a < s < t < b with Is-ti < n, and samples

Xs ... ,X . Partition (a,b) in the manner a= t <t < ... <t < b <t
1 n 0 1 V

where each t.-t = n It suffices to show that for each .>0,

(3.17) sup P0 {supisv(n_ 1/St.,e)I >n- I+ 0.
o V

Let k > 1 be an integer, let IICvI denote the length of C, and notice

that

2k. 22.1 2k.
Is V(h,O) < ICv -I fc I{p(xlh) - O(x)}y(x)I dx

V

SC2 n-(6-)/5 fc {p(xIh) - O(x)}2 dx

V

uniformly in 0, h and v. Therefore the left-hand side of (3.17) is

*- dominated by

(3.18) E E sup P{Is (n- 1/S ti,O) >n - 1+E}(3.8) V i V

SUP E0{ S -1/5 2Z.
E nl- s(n ti)

< C2 n 
(4 k+ 1) / 5 - 2ek E sup Ee{p(x~n-l/St) -OW)2kdx2 i e W0 i

< C3 n(4k+l)/5-2c9. n-4X/5

The last inequality uses the following facts:

,-. Z1/ 1{p(x[n t/ ) - e(x)} < C4{P(xln- 1/t) -E 1/ 2

+ C4{Eop(xln -/Sti) - (x)}2k
41

{Ep(xln t - e(x)} < C5 n
-4 Z/ 5

-1/5 -1/5 2k -4/5
E8{p(xn t. - Eop(xln t < C6 n

... ... ... .. . .... "..... - ......-..-.. .-..... '...,....-.
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all uniformly in x, i and 0, the latter by an inequality for centered

* sums of independent random variables (formula (21.4) of Burkholder [3]);

and the integrandin (3.18) vanishes outside a compact set, independent of

7" i and 0. The number of summands in the sum over i in (3.18) is of order

n , and so if we choose Z so large that X + (1/5) - 2ct< 0, the right-

.*. hand side of (3.18) converges to zero as n - o. This proves (3.17). [1

LEMMA 3.10. For each 0< a< b< o and all positive integers £,

sup EOjnl/2D(2) (n-I/Stie)I 2k < C(a,b,i).
n,er0 , ait<b

One consequence of this result and (3.1) of Lemma 3.1 is that for each

c > 0,

* (3.19) sup P n 2/ID(2) (he,0) > E}0.
• " OE 0

PROOF OF LEMMA 3.10. Use the argument employed to derive (3.S) of

-. Lemma 3.2. ii

4. Main proofs.

Theorem 2.2 is immediate from Lemmas 3.7 and 3.8. (Remember that we

" are taking t=2 throughout, to simplify notation.) The remainder of this

. paper is devoted to proving Theorem 2.1. The classification argument used

by Stone [20] and Marron [11] is an important element of our proof.

Given a data-driven bandwidth h, define 0 to be any element of 0

. such that jh;-hJ = inf Iho-hi. Then h^ is also a data-driven bandwidth -

ec0 e
that is, it is a function of n and X1,.. .Xn alone; it does not employ any

- additional knowledge about the unknown density. For each 01 E0

Ih"he I< Ih ;-hi + Ih-ho11 < 21h-ho 1
111

-. +*- *.., ,,,, .I~k+Ii~.'.A .'~ I l " I i~
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Therefore result (2.1) will follow if we prove it for h0 insead of h:

.,^ n3/10)
(4.1) 1ir liminf sup P0 (h--h3/10 =

c-0 n - -O e0O

Choose O<a 1 <b 1 < such that 2a1 < n1/Sha < b1  for all n and all

0. 0. (Note (3.1) of Lemma 3.1.) We keep al, b1 fixed throughout this

Sn1/5 1/5 (a+b -1/5
section. Define h!^ = h^ if an < ^ < b , and h'n =

otherwise. Set L(z) - -zK'(z), and observe that fL(z)dz = 1 and fzL(z)dz = 0.

(In the case of general t, if K satisfies (1.1) then so does L, although

with dK replaced by (t+l)dK.) Let

A~ n
g(xIh) H (nh) -  [ L{(x-Xi)/h}

i=l

be the density estimate constructed using kernel L instead of K. Define

F(a) f f{i, Ih'a ) - g (xlh' J0(x) - x))dx,

for e0. The first step in establishing Theorem 2.1 is to prove:

PROPOSITION 4.1. Given n1 
> 0, we may choose 02 >0 and a sequence 01 = 0 E

I2 in

such that, for all large n,
I ^ 9/10}

The proof is via a sequence of three lemmas. Let P0 be the probability

measure defined by

PO(E) F 2-m  P (E)0 e

and let E0 denote expectation with respect to P0  Under P0,0 should be

* regarded as a random variable. There are precisely 2m elements in 0.

pa

............

d60

. . .. . . . . . . . . . . . .
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Writing 0 = (1+ E T yv)f and 0 = (1 + T y)fO for sequences {T }

vv 0 vvv v

and {T I of Os and l's, we see that

o(0) =- co S

where co is the constant value taken by f on u C0f0 v v'

S E(T -T )w
V V V

and
SA A A A A

w --_Jc f(x h'^ g(x h'^)}y(x)dx
v 0 0
v

(The function y was defined in Section 2.) Notice that S depends on 0

only through the indicators T ; this observation is crucial to our argument.

Let X denote the sample Xl,.... Xn. Under the probability measure POP

and conditional on X, the T 's are independent Bernoulli random variables
V

with

(4.2) qv 0 (T 1.[× ) = [H fl+Y(xi)}][1 + H {l+y(Xi)-

where 1(v) denotes the product over indices i with X. E C Thus,
1 V

Li = E°(SIX) = Z(q-Tv)w
A A A A

2 2
a. -var 0 (s =I(X-q 

Z - E0 {(T -q)w I JX} < zjw I 3

'2 A

- The next two lemmas describe asymptotic properties of cr and 6.

LEMMA 4.1. There exist -ixed constants O< d1 < d2 < such that

•d 9/5 < ^2 < 9/5
P (d n a <d n )-.
0 12
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PROOF. Let N denote the number of elements of X within Cv , and notice

that the P -distribution of the sequence {N v does not depend on e.

Observe that for a constant c > 0, E e(N v ) = E .N1 ) -cn /  Therefore for

large n,

P(N >3c4/
5 for some v) < C n

1/5 Po(N 1 >3 cn
4/5)

< C n1/5 Pc INI-Ea(N1)I >c n4/5

< C n/5 (c n4/ 5 )-2 E{JN 1-E0 (N1)i 2i

=0(n-
31 5).

Thus, if E is the event that no interval Cv contains more than 3c 
n4 / 5

elements of X, then inf Pe(E)+-.

Let v) denote summation over indices i with XiE C, and observe that

I1tV){l + Y(Xi)} exp[ I (-l)J+ 1j-1 E(v){y(Xi)}]

j=l

(v)(v))

exp(T1 v) +T 2 )2

where
(v) Ev ( v v (v)T_ i I-1 2V - E x i l__3

j=2

Bearing in mind that suplyI < C1 n - 2 / 5, we may easily prove that on the

set E and for all large n, T3v) < C uniformly in v.

Thus, for each z>0 there exist numbers 0<a 2 (z) < b2(z)<o- such that,

^Cvv)

*on the set {Tvj < z, E,

a2(z) < H (v) {1 + y(XJ i I b 2 (Z)

" for all v. Remembering the definition (4.2) of qv in terms of l+Y(X

m1

• ~~............-.....•.........................-............*..............-..-.....*....,......-,...*.-..- *-.-.-.1* -.- ,
" " ' ,''- _ .", 3"'. -. "- .'. . . '.' - .. , '., .' ,'. - ' ," '. ' , -, . ,. -_ .,''- , - " - -. " "
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* we now deduce the existence of a positive, decreasing function a(z) <_ ,
(v)

such that on E, IT, ) < z implies Iqv-I1 < I-a(z). Therefore on E,

_ (4.3) la(z) .wv 1IE(v) Y(X) ) < zi <2~ 0 v. v|_ V ... V Y

" for all z> O.

Let

.( z) IlZ y(X)I < z} fC {f(xjh) - g(xlh)} y"x)dx,

-2a V (hz,)- Eo{w v (h,z)} and 11(h,z,e)- Ev 1v (h,z,O). We claim that the

-9/5function c(n,hz,e) defined by v(h,z,e) = c(n,h,z,0)n -  , is bounded

. away from zero and infinity uniformly in n > 1, hE n-1 /5 (al,b1 ), z > z0

and 0 F O, for some z0 > 0. This is relatively easy to verify if we take

z0 = 0. To see that z0 <- is permissible, notice that

1u(h, z. 8) >uV
> u(h, - [P{IZ(u) y(X) > z}][E{w (h,-) }1

L- w-1/s
E" {w (h,o)} < C1 n

- 4 uniformly in hc n (al ib 1 and e- 0; and

P {IE(V) Y(X)I >z}

? - 2 z(v) 2
S< z Ee{ I  y(Xi) l

=: 2 Ee[Nv E{y2 (X)IX1 Cv + (Nv2_Nv)E{y(X)Y(X)IXX2 C]

-2 -1 2 - 2 2< z C2 [E 0(N) lCl fc y2(x)dx + E{IC(Nv 2  {IIC1 Jc T v y (x)dx}2]-vv v

< -2< C3
u o 3

'L?: .:uniformly in v and 0. (Remember ILc j denotes the length of C.)

--- -,~~~~~........... I i ii ll.. ...................... I



-22-

* Consequently,
,- ! -2 -1

lvi(h,z,O) >. v (h,oo, )- (CIC 3 ) 2 n z

, uniformly in v,h,z and 0. Adding this inequality over v, we see that tile

stated properties of the function c are available for some finite z0 > 0.

Take z= z0 in (4.3). In view of the properties of c established in

the previous paragraph, Lemma 4.1 will follow via (4.3), if we prove that

. for each F>0, and for z= z0 and z=,

* (4.4) sup Pe[ sup E{Wv (n- t,z) - v(n- 1/t,z,e)}l > Cn - 9 / 5  0

OEO a l<t<b V

Using H61der continuity of K and L, and the fact that these functions

have compact support, we may choose X >0 so large that

( 2 n- 1/5 2 l/St, ( 1/S) (-1/5
(4.S) twv  - sz) - w v (n- z)j + n z,a) - v  ,z,e)I}

, -2

uniformly in n, z = z 0 and -, e, v, a 1 < s < t < b with Is-ti n  and

" samples X1.... Xn. Let a 1 = t O <t 1 <... <t < b1 <t be a partition of

(al,b 1) with t i - t =nA for each i. In view of (4.5), result (4.4) will

follow if we show that for each c >O,

P0 - iZ P[K,w 2(n-/tz) - w (n llt,z,O)J I >cn 9 s]SeV v ' v i

converges to zero uniformly in e c 0 and z = z0 and o.

Since K and; L have compact support, and each t. .E (al,b 1). then for each

i we may divide the subscripts v among a fixed finite number k not depending

on i or n) of sets V i,..., Vik such that for each i and j, and for z= z0 and
xth arabe 2 n-1/5t

Wthe variables wv (n t,z), vVij, are stochastically independent, and

1 1
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- for each i, each subscript v is contained in just one set V... Consequently,

for all integers £ > 1,

k 2 -1/5 -/5

P" X 1w (n- tiz) l wV(n ti,z,e)}l >c k- n9

1j"l o VV

k 1- -9/5 -1 "2 -1/5 1/5 2Z.
Z . E0 [j(ck-n- ) Z {wv (n- tz) - Pjn t.,z,o)}2

i j=1 vTV V
iJ

An inequality for moments of sums of independent random variables [3,

formula (21.4)] now gives

P e < _ C ( ) (r- k )2 2 n 1
8 /S E k [{ 2(Y 2 + E ( IY 2k ]

i j=l vEV.. vEV..

2 -1/S -1/5
where Y iv-w v (n z) - p'v (n t.,z,0). The same moment inequality gives

E,(IY.iv22 ) < C n 4Z uniformly in i, v and 0. Since the number of partition

points t. is of order n then'% 1

sup p0 < C3 n18Z/5 Z{(n1 4) £ + n l/ S n -4Z 0(n -/5) 0

, provided only that k.>5X . El

. LEMMA 4.2. For each c >0,

.-" ,, n 14/5+c ).P P0( > n 0 .

PROOF. The argument used to prove Lemma 4.1 shows that for some c3 > 0,

> 2 -9/s
P0( W >c n ) - 0.
0 v v 3

Applying Lemma 3.9 twice, once with p E f and once with p - g, we obtain:

P 0o(supjWvI > n- I + ) 0
v

S.-Lemma 4.2 follows on combining these results.]

. *'° . -o " , . °°° . -. o' .°,, °° °% •° °% °. °o '. °°°' % °.. •° o. % . . °° ,* ° . . °. "° ° ... ° .*. . . . . . , °. °. .1
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Let 0 be the standard normal distribution function.

LEN24A 4.3. For some fixed c > 0,

liminf inf [P0 (ISI > n-9/10x) - 2{1 - 0(cx)] > 0.
n+o x>0

i S A-3 -1/20

PROOF. Let E denote the event that a 3 < n . According to Lemmas

4.1 and 4.2,
,(E)<P( 2 <d n9 -I/20 (d 9/ 3/2,.- 0( < 0(o < I n

9 1 ) + P0{ > n-91(d3n2

1 o 1 0 0

On the set E , the Berry-Esseen bound (15, page 111] gives

.-X).- ^ ^ -1/20
sup IP0(S < x{X) - *D(x-w)/G}I < A n" " _oo-0<x<oo--_

where A is an absolute constant. Therefore on E, and for x > 0,

Po(lSl > xj X) > 1 - P{(x-p)/o} + *{C-x-i)/o1 - 2A n

> 2{l - 4D(x/o)} - 2A n-

.  Taking expectations, and using Lemma 4.1 again, we obtain Lemma 4.3. U

To obtain Proposition 4.1 from Lemma 4.3, choose x > 0 so small that

2{l - 4P(cx)} > 1 - I i, and let n2 = c01x. Then for large n,

1 - < Po(Ic 0 SI > n2 n-9/10

2-' 1 Pe( e) l > r12  
-9110

66e

- Therefore there must exist some elEO such that

1 - 11 < Pal {I(el)I > n2 n 9/10.

Throughout the remainder of our proof of (4.1), we work with the "worst

case" density e1 = eln specified by Proposition 4.1, for some fixed n,,T2 > 0.

F.

-- -- • m I * ms . - * d .i i ...i . - . .. .I- - i ]
'
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Notice that

(W/h) f(xlh) = h- {g(xlh) - f(xjh)}

and

A(h,e) = A(h,0 I) - 2 f {f(xlh) - 01 (x)}{e(x) 01 (x)}dx

+ f {0(x) - 01(x)}
2dx

Differentiate the latter formula with respect to h, and take h= hA,

obtaining:

0 =A (h, + 2 h- 1 f {f(xlh ) - g(xjh )} {e(x) - e (x)}dx.

That is,

(4.6) A (h,1 0 )h: -2 E(61) ,

provided hc n-/5 (al,b1). Expand A 1)(hO) in a Taylor series about h

0 ) e

(4.7) A ( ' 1 (h-he ) A (h.,0 1 ),

where h* lies inbetween hA and h This definition of h* is used in all

e=^ ^ -1/4, t =h
that follows. Define h = h* if jh^-he I < n and h h otherwise.

6 1 0

LEMMA 4.4. For each e>0,

2/5 (2) Aht, I  A(2) > C} 0.
P0 {n JA (h, 1  A(he '6 1 }-

^t
PROOF. From our definition of h

^t -1/4 A

1h he I< n 1h 6 -he I.

Therefore by Lemma 3.7,
^t- n-l1/4)

(4.8) P01Oh -he1 > 2 n 0.

It now follows from (3.4) of Lemma 3.1 that

% - L*.'.-''-.''
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p. {2/5[M (2)(ht •01) - M(2)(h 0 6l1  > 0

and since (by (4.8))

(4.9) P l{h, h0 En-i/s (aI b 1)} +1

the proof of Lemma 4.4 will be completed if we show that

(4.10) P {n 2/SID( 2 (h t ,a)I > c} -0 and P{ {n2l'D(2(h to 1)I >s}10.

Using H6lder continuity of K, K' and K'', and the fact that each of

these functions has compact support, we may produce X> 0 such that

(2) -1/5(2 1/ID (n- s•l) - D (n-1t6 < C n-

uniformly in n > 1, s and tE (alb 1) with Is-ti < n-  and samples X• ...,X n

Let a1 =t 0 <t 1 < ... <t_ < b <t be a partition of (al,b such that

t. -t_ 1 n-x for each i. In view of (4.9), to prove (4.10) it suffices to

prove that

p F pE Pl{n2/SID(2)(n- /5 ti 1 > } +0.

But this is immediate from Lemma 3.10 and Markov's inequality:

p < C .(E- In- 1/10 2X2.0

i

." provided Z is sufficiently large. EU

In view of (3.19),

p {n2/s A (2 (hl ,0 1) - M(2)(h I)l e >E 0

for each c> 0, and so by Lemma 4.4,

(4.11) P0 {n2/SA (2)(ht'e () - (O l) > C} .0.
1 (he1

* . . . ..
°
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Noting (3.3) of Lemma 3.1, let O<a2<1 b2 < be constants such that

n2/SM(2)(h0 6, ) c(a2, 2 b2) for all n, and take c = a2 in (4.11). Then

(4.12) P01{0<A(2)(htel)<b 2 n-2/5}-1

Let ql' T2 be as in Proposition 4.1, and set q (blb2) -2 Let E

be the event that Eh^-h E2 the event that IA((htoi)I <
AtAb2 n

-2 S and E3 the event that h "̂ En
-1/ (a

1 ,b 1 )  Remember that

h h* on E, and that (4.6) holds on E By (4.6) and (4.7),

1'-3/1

(4.13) P0 l (ho-h 0 1 > n3 n I E1 )
%"- IA(1) -3/105 P I(2

-"> P 01 {J (h0,0 1)1 > n13 n -  b .2 n25E 1}  P01 E2

'..> P 01 2 E.(01) 1 > n13 b 2 n- 7/10.b I n-1. E 1  PO1 (E 2)  P l(E 3)

1 1
9/11

"> Pl{ 1) 
> 12 n-/; E 1} Pl(E - PI(E3)

{.' "" > P l(E1)  Pb (E2 ) - E -P(E3 (-) 0,

-. the last line following from Proposition 4.1. Result (4.12) and Lemm 3.4

.,imply that POI (E 2 ), 0 and PoI (E 3) 0, respectively. If n is so large

-3/10 -l1/4. that ri3 11 < n then by (4.13),
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' '1:~ lhe-ho I > q. n- / °

P0 (lh^-h01  > T2 n-/lO; El) + PO (E)

-> Pl( 1 ) P(E 2) - P E3) - + P (E )

1 -( P l(E 3) -Tl 1 n

1 1

hlsas n loo. This proves (4.1), and complet es the proof of Theorem 2.1.

iml htP E-.0adP E)- ,rsetv. I ss ag
• .- . - . . .. . . , . . . . . . . .1. . .. . . .- 1-." --" "-_,, . --' ' , , : , , . '

[.., - ' • -,' ".-."that- . .-".". . "i"- e , "-"", then' "-". by. (4.13),.-% ..-' ' •.-.• ,-.-.. , .%",' -'- ,,,
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